Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Jun 2023 (v1), last revised 5 Jun 2023 (this version, v2)]
Title:A Novel Vision Transformer with Residual in Self-attention for Biomedical Image Classification
View PDFAbstract:Biomedical image classification requires capturing of bio-informatics based on specific feature distribution. In most of such applications, there are mainly challenges due to limited availability of samples for diseased cases and imbalanced nature of dataset. This article presents the novel framework of multi-head self-attention for vision transformer (ViT) which makes capable of capturing the specific image features for classification and analysis. The proposed method uses the concept of residual connection for accumulating the best attention output in each block of multi-head attention. The proposed framework has been evaluated on two small datasets: (i) blood cell classification dataset and (ii) brain tumor detection using brain MRI images. The results show the significant improvement over traditional ViT and other convolution based state-of-the-art classification models.
Submission history
From: Arun Sharma Mr. [view email][v1] Fri, 2 Jun 2023 15:06:14 UTC (1,336 KB)
[v2] Mon, 5 Jun 2023 04:45:36 UTC (1,336 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.