Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 25 Jun 2023 (v1), last revised 17 Nov 2023 (this version, v2)]
Title:Matching-based Hybrid Service Trading for Task Assignment over Dynamic Mobile Crowdsensing Networks
View PDFAbstract:By opportunistically engaging mobile users (workers), mobile crowdsensing (MCS) networks have emerged as important approach to facilitate sharing of sensed/gathered data of heterogeneous mobile devices. To assign tasks among workers and ensure low overheads, a series of stable matching mechanisms is introduced in this paper, which are integrated into a novel hybrid service trading paradigm consisting of futures trading mode and spot trading mode to ensure seamless MCS service provisioning. In the futures trading mode, we determine a set of long-term workers for each task through an overbooking-enabled in-advance many-to-many matching (OIA3M) mechanism, while characterizing the associated risks under statistical analysis. In the spot trading mode, we investigate the impact of fluctuations in long-term workers' resources on the violation of service quality requirements of tasks, and formalize a spot trading mode for tasks with violated service quality requirements under practical budget constraints, where the task-worker mapping is carried out via onsite many-to-many matching (O3M) and onsite many-to-one matching (OMOM). We theoretically show that our proposed matching mechanisms satisfy stability, individual rationality, fairness and computational efficiency. Comprehensive evaluations also verify the satisfaction of these properties under practical network settings, while revealing commendable performance on running time, participators' interactions, and service quality.
Submission history
From: Houyi Qi [view email][v1] Sun, 25 Jun 2023 07:56:21 UTC (4,702 KB)
[v2] Fri, 17 Nov 2023 16:43:03 UTC (2,605 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.