Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Jul 2023]
Title:Generative Adversarial Networks for Dental Patient Identity Protection in Orthodontic Educational Imaging
View PDFAbstract:Objectives: This research introduces a novel area-preserving Generative Adversarial Networks (GAN) inversion technique for effectively de-identifying dental patient images. This innovative method addresses privacy concerns while preserving key dental features, thereby generating valuable resources for dental education and research.
Methods: We enhanced the existing GAN Inversion methodology to maximize the preservation of dental characteristics within the synthesized images. A comprehensive technical framework incorporating several deep learning models was developed to provide end-to-end development guidance and practical application for image de-identification.
Results: Our approach was assessed with varied facial pictures, extensively used for diagnosing skeletal asymmetry and facial anomalies. Results demonstrated our model's ability to adapt the context from one image to another, maintaining compatibility, while preserving dental features essential for oral diagnosis and dental education. A panel of five clinicians conducted an evaluation on a set of original and GAN-processed images. The generated images achieved effective de-identification, maintaining the realism of important dental features and were deemed useful for dental diagnostics and education.
Clinical Significance: Our GAN model and the encompassing framework can streamline the de-identification process of dental patient images, enhancing efficiency in dental education. This method improves students' diagnostic capabilities by offering more exposure to orthodontic malocclusions. Furthermore, it facilitates the creation of de-identified datasets for broader 2D image research at major research institutions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.