Mathematics > Optimization and Control
[Submitted on 14 Jul 2023]
Title:An Overview and Comparison of Spectral Bundle Methods for Primal and Dual Semidefinite Programs
View PDFAbstract:The spectral bundle method developed by Helmberg and Rendl is well-established for solving large-scale semidefinite programs (SDPs) in the dual form, especially when the SDPs admit $\textit{low-rank primal solutions}$. Under mild regularity conditions, a recent result by Ding and Grimmer has established fast linear convergence rates when the bundle method captures $\textit{the rank of primal solutions}$. In this paper, we present an overview and comparison of spectral bundle methods for solving both $\textit{primal}$ and $\textit{dual}$ SDPs. In particular, we introduce a new family of spectral bundle methods for solving SDPs in the $\textit{primal}$ form. The algorithm developments are parallel to those by Helmberg and Rendl, mirroring the elegant duality between primal and dual SDPs. The new family of spectral bundle methods also achieves linear convergence rates for primal feasibility, dual feasibility, and duality gap when the algorithm captures $\textit{the rank of the dual solutions}$. Therefore, the original spectral bundle method by Helmberg and Rendl is well-suited for SDPs with $\textit{low-rank primal solutions}$, while on the other hand, our new spectral bundle method works well for SDPs with $\textit{low-rank dual solutions}$. These theoretical findings are supported by a range of large-scale numerical experiments. Finally, we demonstrate that our new spectral bundle method achieves state-of-the-art efficiency and scalability for solving polynomial optimization compared to a set of baseline solvers $\textsf{SDPT3}$, $\textsf{MOSEK}$, $\textsf{CDCS}$, and $\textsf{SDPNAL+}$.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.