Computer Science > Machine Learning
[Submitted on 16 Jul 2023 (v1), last revised 20 Oct 2023 (this version, v2)]
Title:Revisiting Implicit Models: Sparsity Trade-offs Capability in Weight-tied Model for Vision Tasks
View PDFAbstract:Implicit models such as Deep Equilibrium Models (DEQs) have garnered significant attention in the community for their ability to train infinite layer models with elegant solution-finding procedures and constant memory footprint. However, despite several attempts, these methods are heavily constrained by model inefficiency and optimization instability. Furthermore, fair benchmarking across relevant methods for vision tasks is missing. In this work, we revisit the line of implicit models and trace them back to the original weight-tied models. Surprisingly, we observe that weight-tied models are more effective, stable, as well as efficient on vision tasks, compared to the DEQ variants. Through the lens of these simple-yet-clean weight-tied models, we further study the fundamental limits in the model capacity of such models and propose the use of distinct sparse masks to improve the model capacity. Finally, for practitioners, we offer design guidelines regarding the depth, width, and sparsity selection for weight-tied models, and demonstrate the generalizability of our insights to other learning paradigms.
Submission history
From: Haobo Song [view email][v1] Sun, 16 Jul 2023 11:45:35 UTC (810 KB)
[v2] Fri, 20 Oct 2023 13:22:00 UTC (1,043 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.