Computer Science > Software Engineering
[Submitted on 18 Jul 2023]
Title:An Effective Data-Driven Approach for Localizing Deep Learning Faults
View PDFAbstract:Deep Learning (DL) applications are being used to solve problems in critical domains (e.g., autonomous driving or medical diagnosis systems). Thus, developers need to debug their systems to ensure that the expected behavior is delivered. However, it is hard and expensive to debug DNNs. When the failure symptoms or unsatisfied accuracies are reported after training, we lose the traceability as to which part of the DNN program is responsible for the failure. Even worse, sometimes, a deep learning program has different types of bugs. To address the challenges of debugging DNN models, we propose a novel data-driven approach that leverages model features to learn problem patterns. Our approach extracts these features, which represent semantic information of faults during DNN training. Our technique uses these features as a training dataset to learn and infer DNN fault patterns. Also, our methodology automatically links bug symptoms to their root causes, without the need for manually crafted mappings, so that developers can take the necessary steps to fix faults. We evaluate our approach using real-world and mutated models. Our results demonstrate that our technique can effectively detect and diagnose different bug types. Finally, our technique achieved better accuracy, precision, and recall than prior work for mutated models. Also, our approach achieved comparable results for real-world models in terms of accuracy and performance to the state-of-the-art.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.