Computer Science > Multimedia
[Submitted on 31 Jul 2023 (v1), last revised 2 Aug 2023 (this version, v2)]
Title:An Efficient Recommendation System in E-commerce using Passer learning optimization based on Bi-LSTM
View PDFAbstract:Recommendation system services have become crucial for users to access personalized goods or services as the global e-commerce market expands. They can increase business sales growth and lower the cost of user information exploration. Recent years have seen a signifi-cant increase in researchers actively using user reviews to solve standard recommender system research issues. Reviews may, however, contain information that does not help consumers de-cide what to buy, such as advertising or fictitious or fake reviews. Using such reviews to offer suggestion services may reduce the effectiveness of those recommendations. In this research, the recommendation in e-commerce is developed using passer learning optimization based on Bi-LSTM to solve that issue (PL optimized Bi-LSTM). Data is first obtained from the product recommendation dataset and pre-processed to remove any values that are missing or incon-sistent. Then, feature extraction is performed using TF-IDF features and features that support graph embedding. Before submitting numerous features with the same dimensions to the Bi-LSTM classifier for analysis, they are integrated using the feature concatenation approach. The Collaborative Bi-LSTM method employs these features to determine if the model is a recommended product. The PL optimization approach, which efficiently adjusts the classifier's parameters and produces an extract output that measures the f1-score, MSE, precision, and recall, is the basis of this research's contributions. As compared to earlier methods, the pro-posed PL-optimized Bi-LSTM achieved values of 88.58%, 1.24%, 92.69%, and 92.69% for dataset 1, 88.46%, 0.48%, 92.43%, and 93.47% for dataset 2, and 92.51%, 1.58%, 91.90%, and 90.76% for dataset 3.
Submission history
From: Hemn Abdalla [view email][v1] Mon, 31 Jul 2023 20:09:25 UTC (1,771 KB)
[v2] Wed, 2 Aug 2023 07:34:05 UTC (1,774 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.