Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Aug 2023]
Title:VR-based body tracking to stimulate musculoskeletal training
View PDFAbstract:Training helps to maintain and improve sufficient muscle function, body control, and body coordination. These are important to reduce the risk of fracture incidents caused by falls, especially for the elderly or people recovering from injury. Virtual reality training can offer a cost-effective and individualized training experience. We present an application for the HoloLens 2 to enable musculoskeletal training for elderly and impaired persons to allow for autonomous training and automatic progress evaluation. We designed a virtual downhill skiing scenario that is controlled by body movement to stimulate balance and body control. By adapting the parameters of the ski slope, we can tailor the intensity of the training to individual users. In this work, we evaluate whether the movement data of the HoloLens 2 alone is sufficient to control and predict body movement and joint angles during musculoskeletal training. We record the movements of 10 healthy volunteers with external tracking cameras and track a set of body and joint angles of the participant during training. We estimate correlation coefficients and systematically analyze whether whole body movement can be derived from the movement data of the HoloLens 2. No participant reports movement sickness effects and all were able to quickly interact and control their movement during skiing. Our results show a high correlation between HoloLens 2 movement data and the external tracking of the upper body movement and joint angles of the lower limbs.
Submission history
From: Maximilian Neidhardt [view email][v1] Mon, 7 Aug 2023 07:54:32 UTC (34,955 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.