Computer Science > Machine Learning
[Submitted on 23 Aug 2023 (v1), last revised 1 Feb 2024 (this version, v2)]
Title:Enhancing Energy-Awareness in Deep Learning through Fine-Grained Energy Measurement
View PDFAbstract:With the increasing usage, scale, and complexity of Deep Learning (DL) models, their rapidly growing energy consumption has become a critical concern. Promoting green development and energy awareness at different granularities is the need of the hour to limit carbon emissions of DL systems. However, the lack of standard and repeatable tools to accurately measure and optimize energy consumption at a fine granularity (e.g., at method level) hinders progress in this area. This paper introduces FECoM (Fine-grained Energy Consumption Meter), a framework for fine-grained DL energy consumption measurement. FECoM enables researchers and developers to profile DL APIs from energy perspective. FECoM addresses the challenges of measuring energy consumption at fine-grained level by using static instrumentation and considering various factors, including computational load and temperature stability. We assess FECoM's capability to measure fine-grained energy consumption for one of the most popular open-source DL frameworks, namely TensorFlow. Using FECoM, we also investigate the impact of parameter size and execution time on energy consumption, enriching our understanding of TensorFlow APIs' energy profiles. Furthermore, we elaborate on the considerations, issues, and challenges that one needs to consider while designing and implementing a fine-grained energy consumption measurement tool. This work will facilitate further advances in DL energy measurement and the development of energy-aware practices for DL systems.
Submission history
From: Saurabhsingh Rajput [view email][v1] Wed, 23 Aug 2023 17:32:06 UTC (2,380 KB)
[v2] Thu, 1 Feb 2024 17:35:09 UTC (2,428 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.