Computer Science > Machine Learning
[Submitted on 25 Aug 2023 (v1), last revised 4 Jun 2024 (this version, v3)]
Title:Learning to Intervene on Concept Bottlenecks
View PDF HTML (experimental)Abstract:While deep learning models often lack interpretability, concept bottleneck models (CBMs) provide inherent explanations via their concept representations. Moreover, they allow users to perform interventional interactions on these concepts by updating the concept values and thus correcting the predictive output of the model. Up to this point, these interventions were typically applied to the model just once and then discarded. To rectify this, we present concept bottleneck memory models (CB2Ms), which keep a memory of past interventions. Specifically, CB2Ms leverage a two-fold memory to generalize interventions to appropriate novel situations, enabling the model to identify errors and reapply previous interventions. This way, a CB2M learns to automatically improve model performance from a few initially obtained interventions. If no prior human interventions are available, a CB2M can detect potential mistakes of the CBM bottleneck and request targeted interventions. Our experimental evaluations on challenging scenarios like handling distribution shifts and confounded data demonstrate that CB2Ms are able to successfully generalize interventions to unseen data and can indeed identify wrongly inferred concepts. Hence, CB2Ms are a valuable tool for users to provide interactive feedback on CBMs, by guiding a user's interaction and requiring fewer interventions.
Submission history
From: David Steinmann [view email][v1] Fri, 25 Aug 2023 15:54:22 UTC (186 KB)
[v2] Tue, 9 Apr 2024 11:17:56 UTC (186 KB)
[v3] Tue, 4 Jun 2024 08:21:51 UTC (282 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.