Computer Science > Software Engineering
[Submitted on 5 Sep 2023]
Title:Using a Nearest-Neighbour, BERT-Based Approach for Scalable Clone Detection
View PDFAbstract:Code clones can detrimentally impact software maintenance and manually detecting them in very large codebases is impractical. Additionally, automated approaches find detection of Type 3 and Type 4 (inexact) clones very challenging. While the most recent artificial deep neural networks (for example BERT-based artificial neural networks) seem to be highly effective in detecting such clones, their pairwise comparison of every code pair in the target system(s) is inefficient and scales poorly on large codebases.
We therefore introduce SSCD, a BERT-based clone detection approach that targets high recall of Type 3 and Type 4 clones at scale (in line with our industrial partner's requirements). It does so by computing a representative embedding for each code fragment and finding similar fragments using a nearest neighbour search. SSCD thus avoids the pairwise-comparison bottleneck of other Neural Network approaches while also using parallel, GPU-accelerated search to tackle scalability.
This paper details the approach and an empirical assessment towards configuring and evaluating that approach in industrial setting. The configuration analysis suggests that shorter input lengths and text-only based neural network models demonstrate better efficiency in SSCD, while only slightly decreasing effectiveness. The evaluation results suggest that SSCD is more effective than state-of-the-art approaches like SAGA and SourcererCC. It is also highly efficient: in its optimal setting, SSCD effectively locates clones in the entire 320 million LOC BigCloneBench (a standard clone detection benchmark) in just under three hours.
Submission history
From: James Vincent Patten Dr. [view email][v1] Tue, 5 Sep 2023 12:38:55 UTC (340 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.