Computer Science > Machine Learning
[Submitted on 12 Sep 2023]
Title:A Machine Learning Framework to Deconstruct the Primary Drivers for Electricity Market Price Events
View PDFAbstract:Power grids are moving towards 100% renewable energy source bulk power grids, and the overall dynamics of power system operations and electricity markets are changing. The electricity markets are not only dispatching resources economically but also taking into account various controllable actions like renewable curtailment, transmission congestion mitigation, and energy storage optimization to ensure grid reliability. As a result, price formations in electricity markets have become quite complex. Traditional root cause analysis and statistical approaches are rendered inapplicable to analyze and infer the main drivers behind price formation in the modern grid and markets with variable renewable energy (VRE). In this paper, we propose a machine learning-based analysis framework to deconstruct the primary drivers for price spike events in modern electricity markets with high renewable energy. The outcomes can be utilized for various critical aspects of market design, renewable dispatch and curtailment, operations, and cyber-security applications. The framework can be applied to any ISO or market data; however, in this paper, it is applied to open-source publicly available datasets from California Independent System Operator (CAISO) and ISO New England (ISO-NE).
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.