Electrical Engineering and Systems Science > Systems and Control
[Submitted on 13 Sep 2023]
Title:Data-Driven Synthesis of Configuration-Constrained Robust Invariant Sets for Linear Parameter-Varying Systems
View PDFAbstract:We present a data-driven method to synthesize robust control invariant (RCI) sets for linear parameter-varying (LPV) systems subject to unknown but bounded disturbances. A finite-length data set consisting of state, input, and scheduling signal measurements is used to compute an RCI set and invariance-inducing controller, without identifying an LPV model of the system. We parameterize the RCI set as a configuration-constrained polytope whose facets have a fixed orientation and variable offset. This allows us to define the vertices of the polytopic set in terms of its offset. By exploiting this property, an RCI set and associated vertex control inputs are computed by solving a single linear programming (LP) problem, formulated based on a data-based invariance condition and system constraints. We illustrate the effectiveness of our approach via two numerical examples. The proposed method can generate RCI sets that are of comparable size to those obtained by a model-based method in which exact knowledge of the system matrices is assumed. We show that RCI sets can be synthesized even with a relatively small number of data samples, if the gathered data satisfy certain excitation conditions.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.