Electrical Engineering and Systems Science > Systems and Control
[Submitted on 14 Sep 2023 (v1), last revised 6 Apr 2024 (this version, v4)]
Title:Fast WDM provisioning with minimal probing: the first field experiments for DC exchanges
View PDFAbstract:We propose an approach to estimate the end-to-end GSNR accurately in a short time when a data center interconnect (DCI) network operator receives a service request from users, not by measuring the GSNR at the operational route and wavelength for the End-End optical path but by simply applying a QoT probe channel link by link, at a convenient wavelength/modulation-format for measurement. Assuming connections between coherent transceivers of various frequency ranges, modulators, and modulation formats, we propose a new device software architecture in which the DCI network operator optimizes the transmission mode between user transceivers with high accuracy using only standard parameters such as Bit Error Rate. In this paper, we first experimentally built three different routes of 32 km/72 km/122 km in the C-band to confirm the accuracy of this approach. For the operational end-to-end GSNR measurements, the accuracy estimated from the sum of the measurements for each link was 0.6 dB, and the wavelength-dependent error was about 0.2 dB. Then, using field fibers deployed in the NSF COSMOS testbed (deployed in an urban area), a Linux-based transmission device software architecture, and coherent transceivers with different optical frequency ranges, modulators, and modulation formats, the fast WDM provisioning of an optical path was completed within 6 minutes (with a Q-factor error of about 0.7 dB).
Submission history
From: Hideki Nishizawa [view email][v1] Thu, 14 Sep 2023 00:15:26 UTC (2,064 KB)
[v2] Sun, 17 Sep 2023 11:45:34 UTC (2,061 KB)
[v3] Fri, 24 Nov 2023 00:58:26 UTC (2,241 KB)
[v4] Sat, 6 Apr 2024 12:53:38 UTC (1,532 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.