Computer Science > Cryptography and Security
[Submitted on 15 Sep 2023]
Title:Lattice attack on group ring NTRU: The case of the dihedral group
View PDFAbstract:Group ring NTRU (GR-NTRU) provides a general structure to design different variants of NTRU-like schemes by employing different groups. Although, most of the schemes in literature are built over cyclic groups, nonabelian groups can also be used. Coppersmith and Shamir in 1997 have suggested that noncommutativity may result in better security against some lattice attacks for some groups. Lattice attacks on the public key of NTRU-like cryptosystems try to retrieve the private key by solving the shortest vector problem (SVP) or its approximation in a lattice of a certain dimension, assuming the knowledge of the public key only. This paper shows that dihedral groups do not guarantee better security against this class of attacks. We prove that retrieving the private key is possible by solving the SVP in two lattices with half the dimension of the original lattice generated for GR-NTRU based on dihedral groups. The possibility of such an attack was mentioned by Yasuda et al.(IACR/2015/1170). In contrast to their proposed approach, we explicitly provide the lattice reduction without any structure theorem from the representation theory for finite groups. Furthermore, we demonstrate the effectiveness of our technique with experimental results.
Submission history
From: Sugata Gangopadhyay [view email][v1] Fri, 15 Sep 2023 10:50:46 UTC (1,790 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.