Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 15 Sep 2023 (v1), last revised 19 Sep 2023 (this version, v2)]
Title:Speeding up charge exchange recombination spectroscopy analysis in support of NERSC/DIII-D realtime workflow
View PDFAbstract:We report optimization work made in support of the development of a realtime Superfacility workflow between DIII-D and NERSC. At DIII-D, the ion properties measured by charge exchange recombination (CER) spectroscopy are required inputs for a Superfacility realtime workflow that computes the full plasma kinetic equilibrium. In this workflow, minutes matter since the results must be ready during the brief 10-15 minute pause between plasma discharges. Prior to this work, a sample CERFIT analysis took approximately 15 minutes. Because the problem consists of many calculations that can be done independently, we were able to restructure the CERFIT code to leverage this parallelism with Slurm job arrays. We reduced the runtime to approximately 51 seconds -- a speedup of roughly 20x, saving valuable time for both the scientists interested in the CER results and also for the larger equilibrium reconstruction workflow.
Submission history
From: Laurie Stephey [view email][v1] Fri, 15 Sep 2023 18:27:22 UTC (1,140 KB)
[v2] Tue, 19 Sep 2023 01:22:27 UTC (1,140 KB)
Current browse context:
cs.DC
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.