Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Sep 2023 (v1), last revised 12 Oct 2023 (this version, v2)]
Title:FedDrive v2: an Analysis of the Impact of Label Skewness in Federated Semantic Segmentation for Autonomous Driving
View PDFAbstract:We propose FedDrive v2, an extension of the Federated Learning benchmark for Semantic Segmentation in Autonomous Driving. While the first version aims at studying the effect of domain shift of the visual features across clients, in this work, we focus on the distribution skewness of the labels. We propose six new federated scenarios to investigate how label skewness affects the performance of segmentation models and compare it with the effect of domain shift. Finally, we study the impact of using the domain information during testing. Official website: this https URL
Submission history
From: Eros Fanì [view email][v1] Sat, 23 Sep 2023 10:58:08 UTC (42 KB)
[v2] Thu, 12 Oct 2023 10:24:42 UTC (43 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.