Electrical Engineering and Systems Science > Systems and Control
[Submitted on 28 Sep 2023 (v1), last revised 17 Apr 2024 (this version, v2)]
Title:A harmonic framework for the identification of linear time-periodic systems
View PDF HTML (experimental)Abstract:This paper presents a novel approach for the identification of linear time-periodic (LTP) systems in continuous time. This method is based on harmonic modeling and consists in converting any LTP system into an equivalent LTI system with infinite dimension. Leveraging specific harmonic properties, we demonstrate that solving this infinite-dimensional identification problem can be reduced to solving a finitedimensional linear least-squares problem. The result is an approximation of the original solution with an arbitrarily small error. Our approach offers several significant advantages. The first one is closely tied to the harmonic system's inherent LTI characteristic, along with the Toeplitz structure exhibited by its elements. The second advantage is related to the regularization property achieved through the integral action when computing the phasors from input and state trajectories. Finally, our method avoids the computation of signals' derivative. This sets our approach apart from existing methods that rely on such computations, which can be a notable drawback, especially in continuous-time settings. We provide numerical simulations that convincingly demonstrate the effectiveness of the proposed method, even in scenarios where signals are corrupted by noise.
Submission history
From: Pierre Riedinger [view email] [via CCSD proxy][v1] Thu, 28 Sep 2023 09:13:33 UTC (152 KB)
[v2] Wed, 17 Apr 2024 07:56:55 UTC (414 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.