Computer Science > Machine Learning
[Submitted on 4 Oct 2023 (v1), last revised 12 Feb 2024 (this version, v2)]
Title:$(ε, u)$-Adaptive Regret Minimization in Heavy-Tailed Bandits
View PDFAbstract:Heavy-tailed distributions naturally arise in several settings, from finance to telecommunications. While regret minimization under subgaussian or bounded rewards has been widely studied, learning with heavy-tailed distributions only gained popularity over the last decade. In this paper, we consider the setting in which the reward distributions have finite absolute raw moments of maximum order $1+\epsilon$, uniformly bounded by a constant $u<+\infty$, for some $\epsilon \in (0,1]$. In this setting, we study the regret minimization problem when $\epsilon$ and $u$ are unknown to the learner and it has to adapt. First, we show that adaptation comes at a cost and derive two negative results proving that the same regret guarantees of the non-adaptive case cannot be achieved with no further assumptions. Then, we devise and analyze a fully data-driven trimmed mean estimator and propose a novel adaptive regret minimization algorithm, AdaR-UCB, that leverages such an estimator. Finally, we show that AdaR-UCB is the first algorithm that, under a known distributional assumption, enjoys regret guarantees nearly matching those of the non-adaptive heavy-tailed case.
Submission history
From: Gianmarco Genalti [view email][v1] Wed, 4 Oct 2023 17:11:15 UTC (30 KB)
[v2] Mon, 12 Feb 2024 10:39:44 UTC (59 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.