Computer Science > Cryptography and Security
[Submitted on 10 Sep 2023]
Title:Mitigating Denial of Service Attacks in Fog-Based Wireless Sensor Networks Using Machine Learning Techniques
View PDFAbstract:Wireless sensor networks are considered to be among the most significant and innovative technologies in the 21st century due to their wide range of industrial applications. Sensor nodes in these networks are susceptible to a variety of assaults due to their special qualities and method of deployment. In WSNs, denial of service attacks are common attacks in sensor networks. It is difficult to design a detection and prevention system that would effectively reduce the impact of these attacks on WSNs. In order to identify assaults on WSNs, this study suggests using two machine learning models: decision trees and XGBoost. The WSNs dataset was the subject of extensive tests to identify denial of service attacks. The experimental findings demonstrate that the XGBoost model, when applied to the entire dataset, has a higher true positive rate (98.3%) than the Decision tree approach (97.3%) and a lower false positive rate (1.7%) than the Decision tree technique (2.7%). Like this, with selected dataset assaults, the XGBoost approach has a higher true positive rate (99.01%) than the Decision tree technique (97.50%) and a lower false positive rate (0.99%) than the Decision tree technique (2.50%).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.