Computer Science > Social and Information Networks
[Submitted on 4 Oct 2023]
Title:Analyzing Key Users' behavior trends in Volunteer-Based Networks
View PDFAbstract:Online social networks usage has increased significantly in the last decade and continues to grow in popularity. Multiple social platforms use volunteers as a central component. The behavior of volunteers in volunteer-based networks has been studied extensively in recent years. Here, we explore the development of volunteer-based social networks, primarily focusing on their key users' behaviors and activities. We developed two novel algorithms: the first reveals key user behavior patterns over time; the second utilizes machine learning methods to generate a forecasting model that can predict the future behavior of key users, including whether they will remain active donors or change their behavior to become mainly recipients, and vice-versa. These algorithms allowed us to analyze the factors that significantly influence behavior predictions.
To evaluate our algorithms, we utilized data from over 2.4 million users on a peer-to-peer food-sharing online platform. Using our algorithm, we identified four main types of key user behavior patterns that occur over time. Moreover, we succeeded in forecasting future active donor key users and predicting the key users that would change their behavior to donors, with an accuracy of up to 89.6%. These findings provide valuable insights into the behavior of key users in volunteer-based social networks and pave the way for more effective communities-building in the future, while using the potential of machine learning for this goal.
Submission history
From: Michael (Micky) Fire [view email][v1] Wed, 4 Oct 2023 06:42:21 UTC (1,325 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.