Mathematics > Numerical Analysis
[Submitted on 16 Oct 2023]
Title:Nearly Optimal Approximation Rates for Deep Super ReLU Networks on Sobolev Spaces
View PDFAbstract:This paper introduces deep super ReLU networks (DSRNs) as a method for approximating functions in Sobolev spaces measured by Sobolev norms $W^{m,p}$ for $m\in\mathbb{N}$ with $m\ge 2$ and $1\le p\le +\infty$. Standard ReLU deep neural networks (ReLU DNNs) cannot achieve this goal. DSRNs consist primarily of ReLU DNNs, and several layers of the square of ReLU added at the end to smooth the networks output. This approach retains the advantages of ReLU DNNs, leading to the straightforward training. The paper also proves the optimality of DSRNs by estimating the VC-dimension of higher-order derivatives of DNNs, and obtains the generalization error in Sobolev spaces via an estimate of the pseudo-dimension of higher-order derivatives of DNNs.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.