Computer Science > Machine Learning
[Submitted on 20 Oct 2023 (v1), last revised 4 Sep 2024 (this version, v2)]
Title:Spectral-Aware Augmentation for Enhanced Graph Representation Learning
View PDF HTML (experimental)Abstract:Graph Contrastive Learning (GCL) has demonstrated remarkable effectiveness in learning representations on graphs in recent years. To generate ideal augmentation views, the augmentation generation methods should preserve essential information while discarding less relevant details for downstream tasks. However, current augmentation methods usually involve random topology corruption in the spatial domain, which fails to adequately address information spread across different frequencies in the spectral domain. Our preliminary study highlights this issue, demonstrating that spatial random perturbations impact all frequency bands almost uniformly. Given that task-relevant information typically resides in specific spectral regions that vary across graphs, this one-size-fits-all approach can pose challenges. We argue that indiscriminate spatial random perturbation might unintentionally weaken task-relevant information, reducing its effectiveness.
To tackle this challenge, we propose applying perturbations selectively, focusing on information specific to different frequencies across diverse graphs. In this paper, we present GASSER, a model that applies tailored perturbations to specific frequencies of graph structures in the spectral domain, guided by spectral hints. Through extensive experimentation and theoretical analysis, we demonstrate that the augmentation views generated by GASSER are adaptive, controllable, and intuitively aligned with the homophily ratios and spectrum of graph structures.
Submission history
From: Kaiqi Yang [view email][v1] Fri, 20 Oct 2023 22:39:07 UTC (824 KB)
[v2] Wed, 4 Sep 2024 23:17:41 UTC (409 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.