Computer Science > Emerging Technologies
[Submitted on 25 Oct 2023]
Title:Neuromorphic weighted sum with magnetic skyrmions
View PDFAbstract:Integrating magnetic skyrmion properties into neuromorphic computing promises advancements in hardware efficiency and computational power. However, a scalable implementation of the weighted sum of neuron signals, a core operation in neural networks, has yet to be demonstrated. In this study, we exploit the non-volatile and particle-like characteristics of magnetic skyrmions, akin to synaptic vesicles and neurotransmitters, to perform this weighted sum operation in a compact, biologically-inspired manner. To this aim, skyrmions are electrically generated in numbers proportional to the input with an efficiency given by a non-volatile weight. These chiral particles are then directed using localized current injections to a location where their presence is quantified through non-perturbative electrical measurements. Our experimental demonstration, currently with two inputs, can be scaled to accommodate multiple inputs and outputs using a crossbar array design, potentially nearing the energy efficiency observed in biological systems.
Submission history
From: Tristan da Câmara Santa Clara Gomes Dr. [view email][v1] Wed, 25 Oct 2023 18:18:39 UTC (4,506 KB)
Current browse context:
cs.ET
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.