Quantitative Biology > Tissues and Organs
[Submitted on 30 Oct 2023]
Title:Recipes for calibration and validation of agent-based models in cancer biomedicine
View PDFAbstract:Computational models and simulations are not just appealing because of their intrinsic characteristics across spatiotemporal scales, scalability, and predictive power, but also because the set of problems in cancer biomedicine that can be addressed computationally exceeds the set of those amenable to analytical solutions. Agent-based models and simulations are especially interesting candidates among computational modelling strategies in cancer research due to their capabilities to replicate realistic local and global interaction dynamics at a convenient and relevant scale. Yet, the absence of methods to validate the consistency of the results across scales can hinder adoption by turning fine-tuned models into black boxes. This review compiles relevant literature to explore strategies to leverage high-fidelity simulations of multi-scale, or multi-level, cancer models with a focus on validation approached as simulation calibration. We argue that simulation calibration goes beyond parameter optimization by embedding informative priors to generate plausible parameter configurations across multiple dimensions.
Current browse context:
q-bio.TO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.