Computer Science > Machine Learning
[Submitted on 1 Nov 2023 (v1), last revised 16 Aug 2024 (this version, v2)]
Title:Federated Natural Policy Gradient and Actor Critic Methods for Multi-task Reinforcement Learning
View PDFAbstract:Federated reinforcement learning (RL) enables collaborative decision making of multiple distributed agents without sharing local data trajectories. In this work, we consider a multi-task setting, in which each agent has its own private reward function corresponding to different tasks, while sharing the same transition kernel of the environment. Focusing on infinite-horizon Markov decision processes, the goal is to learn a globally optimal policy that maximizes the sum of the discounted total rewards of all the agents in a decentralized manner, where each agent only communicates with its neighbors over some prescribed graph topology.
We develop federated vanilla and entropy-regularized natural policy gradient (NPG) methods in the tabular setting under softmax parameterization, where gradient tracking is applied to estimate the global Q-function to mitigate the impact of imperfect information sharing. We establish non-asymptotic global convergence guarantees under exact policy evaluation, where the rates are nearly independent of the size of the state-action space and illuminate the impacts of network size and connectivity. To the best of our knowledge, this is the first time that near dimension-free global convergence is established for federated multi-task RL using policy optimization. We further go beyond the tabular setting by proposing a federated natural actor critic (NAC) method for multi-task RL with function approximation, and establish its finite-time sample complexity taking the errors of function approximation into account.
Submission history
From: Tong Yang [view email][v1] Wed, 1 Nov 2023 00:15:18 UTC (879 KB)
[v2] Fri, 16 Aug 2024 16:34:00 UTC (1,570 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.