Computer Science > Machine Learning
[Submitted on 9 Nov 2023]
Title:Diffusion-Generative Multi-Fidelity Learning for Physical Simulation
View PDFAbstract:Multi-fidelity surrogate learning is important for physical simulation related applications in that it avoids running numerical solvers from scratch, which is known to be costly, and it uses multi-fidelity examples for training and greatly reduces the cost of data collection. Despite the variety of existing methods, they all build a model to map the input parameters outright to the solution output. Inspired by the recent breakthrough in generative models, we take an alternative view and consider the solution output as generated from random noises. We develop a diffusion-generative multi-fidelity (DGMF) learning method based on stochastic differential equations (SDE), where the generation is a continuous denoising process. We propose a conditional score model to control the solution generation by the input parameters and the fidelity. By conditioning on additional inputs (temporal or spacial variables), our model can efficiently learn and predict multi-dimensional solution arrays. Our method naturally unifies discrete and continuous fidelity modeling. The advantage of our method in several typical applications shows a promising new direction for multi-fidelity learning.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.