Computer Science > Computation and Language
[Submitted on 16 Nov 2023 (v1), last revised 8 Apr 2024 (this version, v2)]
Title:Fumbling in Babel: An Investigation into ChatGPT's Language Identification Ability
View PDF HTML (experimental)Abstract:ChatGPT has recently emerged as a powerful NLP tool that can carry out a variety of tasks. However, the range of languages ChatGPT can handle remains largely a mystery. To uncover which languages ChatGPT `knows', we investigate its language identification (LID) abilities. For this purpose, we compile Babel-670, a benchmark comprising 670 languages representing 24 language families spoken in five continents. Languages in Babel-670 run the gamut from the very high-resource to the very low-resource. We then study ChatGPT's (both GPT-3.5 and GPT-4) ability to (i) identify language names and language codes (ii) under zero- and few-shot conditions (iii) with and without provision of a label set. When compared to smaller finetuned LID tools, we find that ChatGPT lags behind. For example, it has poor performance on African languages. We conclude that current large language models would benefit from further development before they can sufficiently serve diverse communities.
Submission history
From: Wei-Rui Chen [view email][v1] Thu, 16 Nov 2023 09:12:20 UTC (1,286 KB)
[v2] Mon, 8 Apr 2024 20:57:40 UTC (5,235 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.