Computer Science > Robotics
[Submitted on 23 Oct 2023]
Title:Systematic Evaluation of Applying Space-Filling Curves to Automotive Maneuver Detection
View PDFAbstract:Identifying driving maneuvers plays an essential role on-board vehicles to monitor driving and driver states, as well as off-board to train and evaluate machine learning algorithms for automated driving for example. Maneuvers can be characterized by vehicle kinematics or data from its surroundings including other traffic participants. Extracting relevant maneuvers therefore requires analyzing time-series of (i) structured, multi-dimensional kinematic data, and (ii) unstructured, large data samples for video, radar, or LiDAR sensors. However, such data analysis requires scalable and computationally efficient approaches, especially for non-annotated data. In this paper, we are presenting a maneuver detection approach based on two variants of space-filling curves (Z-order and Hilbert) to detect maneuvers when passing roundabouts that do not use GPS data. We systematically evaluate their respective performance by including permutations of selections of kinematic signals at varying frequencies and compare them with two alternative baselines: All manually identified roundabouts, and roundabouts that are marked by geofences. We find that encoding just longitudinal and lateral accelerations sampled at 10Hz using a Hilbert space-filling curve is already successfully identifying roundabout maneuvers, which allows to avoid the use of potentially sensitive signals such as GPS locations to comply with data protection and privacy regulations like GDPR.
Submission history
From: Beatriz Cabrero-Daniel [view email][v1] Mon, 23 Oct 2023 12:56:09 UTC (15,271 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.