Computer Science > Information Theory
[Submitted on 22 Nov 2023]
Title:Optimal Time of Arrival Estimation for MIMO Backscatter Channels
View PDFAbstract:In this paper, we propose a novel time of arrival (TOA) estimator for multiple-input-multiple-output (MIMO) backscatter channels in closed form. The proposed estimator refines the estimation precision from the topological structure of the MIMO backscatter channels, and can considerably enhance the estimation accuracy. Particularly, we show that for the general $M \times N$ bistatic topology, the mean square error (MSE) is $\frac{M+N-1}{MN}\sigma^2_0$, and for the general $M \times M$ monostatic topology, it is $\frac{2M-1}{M^2}\sigma^2_0$ for the diagonal subchannels, and $\frac{M-1}{M^2}\sigma^2_0$ for the off-diagonal subchannels, where $\sigma^2_0$ is the MSE of the conventional least square estimator. In addition, we derive the Cramer-Rao lower bound (CRLB) for MIMO backscatter TOA estimation which indicates that the proposed estimator is optimal. Simulation results verify that the proposed TOA estimator can considerably improve both estimation and positioning accuracy, especially when the MIMO scale is large.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.