Computer Science > Machine Learning
[Submitted on 22 Nov 2023 (v1), last revised 20 Mar 2024 (this version, v2)]
Title:REDS: Resource-Efficient Deep Subnetworks for Dynamic Resource Constraints
View PDF HTML (experimental)Abstract:Deep models deployed on edge devices frequently encounter resource variability, which arises from fluctuating energy levels, timing constraints, or prioritization of other critical tasks within the system. State-of-the-art machine learning pipelines generate resource-agnostic models, not capable to adapt at runtime. In this work we introduce Resource-Efficient Deep Subnetworks (REDS) to tackle model adaptation to variable resources. In contrast to the state-of-the-art, REDS use structured sparsity constructively by exploiting permutation invariance of neurons, which allows for hardware-specific optimizations. Specifically, REDS achieve computational efficiency by (1) skipping sequential computational blocks identified by a novel iterative knapsack optimizer, and (2) leveraging simple math to re-arrange the order of operations in REDS computational graph to take advantage of the data cache. REDS support conventional deep networks frequently deployed on the edge and provide computational benefits even for small and simple networks. We evaluate REDS on seven benchmark architectures trained on the Visual Wake Words, Google Speech Commands, Fashion-MNIST and CIFAR10 datasets, and test on four off-the-shelf mobile and embedded hardware platforms. We provide a theoretical result and empirical evidence for REDS outstanding performance in terms of submodels' test set accuracy, and demonstrate an adaptation time in response to dynamic resource constraints of under 40$\mu$s, utilizing a 2-layer fully-connected network on Arduino Nano 33 BLE.
Submission history
From: Francesco Corti [view email][v1] Wed, 22 Nov 2023 12:34:51 UTC (1,053 KB)
[v2] Wed, 20 Mar 2024 10:21:34 UTC (644 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.