Computer Science > Machine Learning
[Submitted on 26 Nov 2023 (v1), last revised 14 Feb 2024 (this version, v2)]
Title:ASI: Accuracy-Stability Index for Evaluating Deep Learning Models
View PDFAbstract:In the context of deep learning research, where model introductions continually occur, the need for effective and efficient evaluation remains paramount. Existing methods often emphasize accuracy metrics, overlooking stability. To address this, the paper introduces the Accuracy-Stability Index (ASI), a quantitative measure incorporating both accuracy and stability for assessing deep learning models. Experimental results demonstrate the application of ASI, and a 3D surface model is presented for visualizing ASI, mean accuracy, and coefficient of variation. This paper addresses the important issue of quantitative benchmarking metrics for deep learning models, providing a new approach for accurately evaluating accuracy and stability of deep learning models. The paper concludes with discussions on potential weaknesses and outlines future research directions.
Submission history
From: Daniel Berleant [view email][v1] Sun, 26 Nov 2023 15:34:36 UTC (989 KB)
[v2] Wed, 14 Feb 2024 19:35:22 UTC (618 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.