Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Dec 2023]
Title:FeaInfNet: Diagnosis in Medical Image with Feature-Driven Inference and Visual Explanations
View PDFAbstract:Interpretable deep learning models have received widespread attention in the field of image recognition. Due to the unique multi-instance learning of medical images and the difficulty in identifying decision-making regions, many interpretability models that have been proposed still have problems of insufficient accuracy and interpretability in medical image disease diagnosis. To solve these problems, we propose feature-driven inference network (FeaInfNet). Our first key innovation involves proposing a feature-based network reasoning structure, which is applied to FeaInfNet. The network of this structure compares the similarity of each sub-region image patch with the disease templates and normal templates that may appear in the region, and finally combines the comparison of each sub-region to make the final diagnosis. It simulates the diagnosis process of doctors to make the model interpretable in the reasoning process, while avoiding the misleading caused by the participation of normal areas in reasoning. Secondly, we propose local feature masks (LFM) to extract feature vectors in order to provide global information for these vectors, thus enhancing the expressive ability of the FeaInfNet. Finally, we propose adaptive dynamic masks (Adaptive-DM) to interpret feature vectors and prototypes into human-understandable image patches to provide accurate visual interpretation. We conducted qualitative and quantitative experiments on multiple publicly available medical datasets, including RSNA, iChallenge-PM, Covid-19, ChinaCXRSet, and MontgomerySet. The results of our experiments validate that our method achieves state-of-the-art performance in terms of classification accuracy and interpretability compared to baseline methods in medical image diagnosis. Additional ablation studies verify the effectiveness of each of our proposed components.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.