Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Dec 2023 (v1), last revised 28 Aug 2024 (this version, v3)]
Title:Re-Nerfing: Improving Novel View Synthesis through Novel View Synthesis
View PDF HTML (experimental)Abstract:Recent neural rendering and reconstruction techniques, such as NeRFs or Gaussian Splatting, have shown remarkable novel view synthesis capabilities but require hundreds of images of the scene from diverse viewpoints to render high-quality novel views. With fewer images available, these methods start to fail since they can no longer correctly triangulate the underlying 3D geometry and converge to a non-optimal solution. These failures can manifest as floaters or blurry renderings in sparsely observed areas of the scene. In this paper, we propose Re-Nerfing, a simple and general add-on approach that leverages novel view synthesis itself to tackle this problem. Using an already trained NVS method, we render novel views between existing ones and augment the training data to optimize a second model. This introduces additional multi-view constraints and allows the second model to converge to a better solution. With Re-Nerfing we achieve significant improvements upon multiple pipelines based on NeRF and Gaussian-Splatting in sparse view settings of the mip-NeRF 360 and LLFF datasets. Notably, Re-Nerfing does not require prior knowledge or extra supervision signals, making it a flexible and practical add-on.
Submission history
From: Felix Tristram [view email][v1] Mon, 4 Dec 2023 18:56:08 UTC (22,417 KB)
[v2] Wed, 17 Apr 2024 17:44:44 UTC (14,105 KB)
[v3] Wed, 28 Aug 2024 12:43:10 UTC (36,928 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.