Computer Science > Machine Learning
[Submitted on 8 Dec 2023]
Title:Modeling Risk in Reinforcement Learning: A Literature Mapping
View PDFAbstract:Safe reinforcement learning deals with mitigating or avoiding unsafe situations by reinforcement learning (RL) agents. Safe RL approaches are based on specific risk representations for particular problems or domains. In order to analyze agent behaviors, compare safe RL approaches, and effectively transfer techniques between application domains, it is necessary to understand the types of risk specific to safe RL problems. We performed a systematic literature mapping with the objective to characterize risk in safe RL. Based on the obtained results, we present definitions, characteristics, and types of risk that hold on multiple application domains. Our literature mapping covers literature from the last 5 years (2017-2022), from a variety of knowledge areas (AI, finance, engineering, medicine) where RL approaches emphasize risk representation and management. Our mapping covers 72 papers filtered systematically from over thousands of papers on the topic. Our proposed notion of risk covers a variety of representations, disciplinary differences, common training exercises, and types of techniques. We encourage researchers to include explicit and detailed accounts of risk in future safe RL research reports, using this mapping as a starting point. With this information, researchers and practitioners could draw stronger conclusions on the effectiveness of techniques on different problems.
Submission history
From: Leonardo Villalobos-Arias [view email][v1] Fri, 8 Dec 2023 18:26:08 UTC (4,300 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.