Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Dec 2023]
Title:Multi-Attention Fusion Drowsy Driving Detection Model
View PDF HTML (experimental)Abstract:Drowsy driving represents a major contributor to traffic accidents, and the implementation of driver drowsy driving detection systems has been proven to significantly reduce the occurrence of such accidents. Despite the development of numerous drowsy driving detection algorithms, many of them impose specific prerequisites such as the availability of complete facial images, optimal lighting conditions, and the use of RGB images. In our study, we introduce a novel approach called the Multi-Attention Fusion Drowsy Driving Detection Model (MAF). MAF is aimed at significantly enhancing classification performance, especially in scenarios involving partial facial occlusion and low lighting conditions. It accomplishes this by capitalizing on the local feature extraction capabilities provided by multi-attention fusion, thereby enhancing the algorithm's overall robustness. To enhance our dataset, we collected real-world data that includes both occluded and unoccluded faces captured under nighttime and daytime lighting conditions. We conducted a comprehensive series of experiments using both publicly available datasets and our self-built data. The results of these experiments demonstrate that our proposed model achieves an impressive driver drowsiness detection accuracy of 96.8%.
Submission history
From: Zhenguo Gao Prof. [view email][v1] Thu, 28 Dec 2023 14:53:32 UTC (6,543 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.