Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Dec 2023 (v1), last revised 23 May 2024 (this version, v2)]
Title:Multiscale Vision Transformers meet Bipartite Matching for efficient single-stage Action Localization
View PDF HTML (experimental)Abstract:Action Localization is a challenging problem that combines detection and recognition tasks, which are often addressed separately. State-of-the-art methods rely on off-the-shelf bounding box detections pre-computed at high resolution, and propose transformer models that focus on the classification task alone. Such two-stage solutions are prohibitive for real-time deployment. On the other hand, single-stage methods target both tasks by devoting part of the network (generally the backbone) to sharing the majority of the workload, compromising performance for speed. These methods build on adding a DETR head with learnable queries that after cross- and self-attention can be sent to corresponding MLPs for detecting a person's bounding box and action. However, DETR-like architectures are challenging to train and can incur in big complexity.
In this paper, we observe that \textbf{a straight bipartite matching loss can be applied to the output tokens of a vision transformer}. This results in a backbone + MLP architecture that can do both tasks without the need of an extra encoder-decoder head and learnable queries. We show that a single MViTv2-S architecture trained with bipartite matching to perform both tasks surpasses the same MViTv2-S when trained with RoI align on pre-computed bounding boxes. With a careful design of token pooling and the proposed training pipeline, our Bipartite-Matching Vision Transformer model, \textbf{BMViT}, achieves +3 mAP on AVA2.2. w.r.t. the two-stage MViTv2-S counterpart. Code is available at \href{this https URL}{this https URL}
Submission history
From: Ioanna Ntinou [view email][v1] Fri, 29 Dec 2023 17:08:38 UTC (39,339 KB)
[v2] Thu, 23 May 2024 15:52:11 UTC (16,535 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.