Computer Science > Machine Learning
[Submitted on 11 Jan 2024]
Title:An Exploratory Assessment of LLM's Potential Toward Flight Trajectory Reconstruction Analysis
View PDF HTML (experimental)Abstract:Large Language Models (LLMs) hold transformative potential in aviation, particularly in reconstructing flight trajectories. This paper investigates this potential, grounded in the notion that LLMs excel at processing sequential data and deciphering complex data structures. Utilizing the LLaMA 2 model, a pre-trained open-source LLM, the study focuses on reconstructing flight trajectories using Automatic Dependent Surveillance-Broadcast (ADS-B) data with irregularities inherent in real-world scenarios. The findings demonstrate the model's proficiency in filtering noise and estimating both linear and curved flight trajectories. However, the analysis also reveals challenges in managing longer data sequences, which may be attributed to the token length limitations of LLM models. The study's insights underscore the promise of LLMs in flight trajectory reconstruction and open new avenues for their broader application across the aviation and transportation sectors.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.