Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Jan 2024]
Title:Small Object Detection by DETR via Information Augmentation and Adaptive Feature Fusion
View PDFAbstract:The main challenge for small object detection algorithms is to ensure accuracy while pursuing real-time performance. The RT-DETR model performs well in real-time object detection, but performs poorly in small object detection accuracy. In order to compensate for the shortcomings of the RT-DETR model in small object detection, two key improvements are proposed in this study. Firstly, The RT-DETR utilises a Transformer that receives input solely from the final layer of Backbone features. This means that the Transformer's input only receives semantic information from the highest level of abstraction in the Deep Network, and ignores detailed information such as edges, texture or color gradients that are critical to the location of small objects at lower levels of abstraction. Including only deep features can introduce additional background noise. This can have a negative impact on the accuracy of small object detection. To address this issue, we propose the fine-grained path augmentation method. This method helps to locate small objects more accurately by providing detailed information to the deep network. So, the input to the transformer contains both semantic and detailed information. Secondly, In RT-DETR, the decoder takes feature maps of different levels as input after concatenating them with equal weight. However, this operation is not effective in dealing with the complex relationship of multi-scale information captured by feature maps of different sizes. Therefore, we propose an adaptive feature fusion algorithm that assigns learnable parameters to each feature map from different levels. This allows the model to adaptively fuse feature maps from different levels and effectively integrate feature information from different scales. This enhances the model's ability to capture object features at different scales, thereby improving the accuracy of detecting small objects.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.