Electrical Engineering and Systems Science > Systems and Control
[Submitted on 18 Jan 2024]
Title:QoS-Aware 3D Coverage Deployment of UAVs for Internet of Vehicles in Intelligent Transportation
View PDF HTML (experimental)Abstract:It is a challenging problem to characterize the air-to-ground (A2G) channel and identify the best deployment location for 3D UAVs with the QoS awareness. To address this problem, we propose a QoS-aware UAV 3D coverage deployment algorithm, which simulates the three-dimensional urban road scenario, considers the UAV communication resource capacity and vehicle communication QoS requirements comprehensively, and then obtains the optimal UAV deployment position by improving the genetic algorithm. Specifically, the K-means clustering algorithm is used to cluster the vehicles, and the center locations of these clusters serve as the initial UAV positions to generate the initial population. Subsequently, we employ the K-means initialized grey wolf optimization (KIGWO) algorithm to achieve the UAV location with an optimal fitness value by performing an optimal search within the grey wolf population. To enhance the algorithm's diversity and global search capability, we randomly substitute this optimal location with one of the individual locations from the initial population. The fitness value is determined by the total number of vehicles covered by UAVs in the system, while the allocation scheme's feasibility is evaluated based on the corresponding QoS requirements. Competitive selection operations are conducted to retain individuals with higher fitness values, while crossover and mutation operations are employed to maintain the diversity of solutions. Finally, the individual with the highest fitness, which represents the UAV deployment position that covers the maximum number of vehicles in the entire system, is selected as the optimal solution. Extensive experimental results demonstrate that the proposed algorithm can effectively enhance the reliability and vehicle communication QoS.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.