Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Jan 2024 (v1), last revised 22 May 2024 (this version, v2)]
Title:CustomVideo: Customizing Text-to-Video Generation with Multiple Subjects
View PDF HTML (experimental)Abstract:Customized text-to-video generation aims to generate high-quality videos guided by text prompts and subject references. Current approaches for personalizing text-to-video generation suffer from tackling multiple subjects, which is a more challenging and practical scenario. In this work, our aim is to promote multi-subject guided text-to-video customization. We propose CustomVideo, a novel framework that can generate identity-preserving videos with the guidance of multiple subjects. To be specific, firstly, we encourage the co-occurrence of multiple subjects via composing them in a single image. Further, upon a basic text-to-video diffusion model, we design a simple yet effective attention control strategy to disentangle different subjects in the latent space of diffusion model. Moreover, to help the model focus on the specific area of the object, we segment the object from given reference images and provide a corresponding object mask for attention learning. Also, we collect a multi-subject text-to-video generation dataset as a comprehensive benchmark, with 63 individual subjects from 13 different categories and 68 meaningful pairs. Extensive qualitative, quantitative, and user study results demonstrate the superiority of our method compared to previous state-of-the-art approaches. The project page is this https URL.
Submission history
From: Zhao Wang [view email][v1] Thu, 18 Jan 2024 13:23:51 UTC (9,210 KB)
[v2] Wed, 22 May 2024 15:40:22 UTC (12,487 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.