Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Jan 2024]
Title:Dynamic Transformer Architecture for Continual Learning of Multimodal Tasks
View PDF HTML (experimental)Abstract:Transformer neural networks are increasingly replacing prior architectures in a wide range of applications in different data modalities. The increasing size and computational demands of fine-tuning large pre-trained transformer neural networks pose significant challenges for the widespread adoption of these models for applications that demand on-edge computing. To tackle this challenge, continual learning (CL) emerges as a solution by facilitating the transfer of knowledge across tasks that arrive sequentially for an autonomously learning agent. However, current CL methods mainly focus on learning tasks that are exclusively vision-based or language-based. We propose a transformer-based CL framework focusing on learning tasks that involve both vision and language, known as Vision-and-Language (VaL) tasks. Due to the success of transformers in other modalities, our architecture has the potential to be used in multimodal learning settings. In our framework, we benefit from introducing extra parameters to a base transformer to specialize the network for each task. As a result, we enable dynamic model expansion to learn several tasks in a sequence. We also use knowledge distillation to benefit from relevant past experiences to learn the current task more efficiently. Our proposed method, Task Attentive Multimodal Continual Learning (TAM-CL), allows for the exchange of information between tasks while mitigating the problem of catastrophic forgetting. Notably, our approach is scalable, incurring minimal memory and time overhead. TAM-CL achieves state-of-the-art (SOTA) performance on challenging multimodal tasks
Submission history
From: Mohammad Rostami [view email][v1] Sat, 27 Jan 2024 03:03:30 UTC (1,717 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.