Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 27 Jan 2024]
Title:Decentralized Gossip Mutual Learning (GML) for brain tumor segmentation on multi-parametric MRI
View PDFAbstract:Federated Learning (FL) enables collaborative model training among medical centers without sharing private data. However, traditional FL risks on server failures and suboptimal performance on local data due to the nature of centralized model aggregation. To address these issues, we present Gossip Mutual Learning (GML), a decentralized framework that uses Gossip Protocol for direct peer-to-peer communication. In addition, GML encourages each site to optimize its local model through mutual learning to account for data variations among different sites. For the task of tumor segmentation using 146 cases from four clinical sites in BraTS 2021 dataset, we demonstrated GML outperformed local models and achieved similar performance as FedAvg with only 25% communication overhead.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.