Computer Science > Computation and Language
[Submitted on 2 Feb 2024]
Title:What Makes Medical Claims (Un)Verifiable? Analyzing Entity and Relation Properties for Fact Verification
View PDFAbstract:Biomedical claim verification fails if no evidence can be discovered. In these cases, the fact-checking verdict remains unknown and the claim is unverifiable. To improve upon this, we have to understand if there are any claim properties that impact its verifiability. In this work we assume that entities and relations define the core variables in a biomedical claim's anatomy and analyze if their properties help us to differentiate verifiable from unverifiable claims. In a study with trained annotation experts we prompt them to find evidence for biomedical claims, and observe how they refine search queries for their evidence search. This leads to the first corpus for scientific fact verification annotated with subject-relation-object triplets, evidence documents, and fact-checking verdicts (the BEAR-Fact corpus). We find (1) that discovering evidence for negated claims (e.g., X-does-not-cause-Y) is particularly challenging. Further, we see that annotators process queries mostly by adding constraints to the search and by normalizing entities to canonical names. (2) We compare our in-house annotations with a small crowdsourcing setting where we employ medical experts and laypeople. We find that domain expertise does not have a substantial effect on the reliability of annotations. Finally, (3), we demonstrate that it is possible to reliably estimate the success of evidence retrieval purely from the claim text~(.82\F), whereas identifying unverifiable claims proves more challenging (.27\F). The dataset is available at this http URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.