Mathematics > Combinatorics
[Submitted on 7 Feb 2024 (v1), last revised 24 Oct 2024 (this version, v2)]
Title:Grand zigzag knight's paths
View PDF HTML (experimental)Abstract:We study the enumeration of different classes of grand knight's paths in the plane. In particular, we focus on the subsets of zigzag knight's paths that are subject to constraints. These constraints include ending at $y$-coordinate 0, bounded by a horizontal line, confined within a tube, among other considerations. We present our results using generating functions or direct closed-form expressions. We derive asymptotic results, finding approximations for quantities such as the probability that a zigzag knight's path stays in some area of the plane, or for the average of the altitude of such a path. Additionally, we exhibit some bijections between grand zigzag knight's paths and some pairs of compositions.
Submission history
From: Sergey Kirgizov S. [view email][v1] Wed, 7 Feb 2024 13:48:51 UTC (25 KB)
[v2] Thu, 24 Oct 2024 19:05:22 UTC (24 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.