Computer Science > Computer Science and Game Theory
[Submitted on 7 Feb 2024]
Title:Convergence of Approximate and Packet Routing Equilibria to Nash Flows Over Time
View PDFAbstract:We consider a dynamic model of traffic that has received a lot of attention in the past few years. Infinitesimally small agents aim to travel from a source to a destination as quickly as possible. Flow patterns vary over time, and congestion effects are modeled via queues, which form based on the deterministic queueing model whenever the inflow into a link exceeds its capacity. Are equilibria in this model meaningful as a prediction of traffic behavior? For this to be the case, a certain notion of stability under ongoing perturbations is needed. Real traffic consists of discrete, atomic ''packets'', rather than being a continuous flow of non-atomic agents. Users may not choose an absolutely quickest route available, if there are multiple routes with very similar travel times. We would hope that in both these situations -- a discrete packet model, with packet size going to 0, and $\epsilon$-equilibria, with $\epsilon$ going to 0 -- equilibria converge to dynamic equilibria in the flow over time model. No such convergence results were known. We show that such a convergence result does hold in single-commodity instances for both of these settings, in a unified way. More precisely, we introduce a notion of ''strict'' $\epsilon$-equilibria, and show that these must converge to the exact dynamic equilibrium in the limit as $\epsilon \to 0$. We then show that results for the two settings mentioned can be deduced from this with only moderate further technical effort.
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.