Computer Science > Machine Learning
[Submitted on 7 Feb 2024 (v1), last revised 1 Nov 2024 (this version, v3)]
Title:QGFN: Controllable Greediness with Action Values
View PDF HTML (experimental)Abstract:Generative Flow Networks (GFlowNets; GFNs) are a family of energy-based generative methods for combinatorial objects, capable of generating diverse and high-utility samples. However, consistently biasing GFNs towards producing high-utility samples is non-trivial. In this work, we leverage connections between GFNs and reinforcement learning (RL) and propose to combine the GFN policy with an action-value estimate, $Q$, to create greedier sampling policies which can be controlled by a mixing parameter. We show that several variants of the proposed method, QGFN, are able to improve on the number of high-reward samples generated in a variety of tasks without sacrificing diversity.
Submission history
From: Elaine Lau [view email][v1] Wed, 7 Feb 2024 20:14:22 UTC (46,168 KB)
[v2] Thu, 23 May 2024 20:19:00 UTC (13,145 KB)
[v3] Fri, 1 Nov 2024 04:34:07 UTC (793 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.