Computer Science > Artificial Intelligence
[Submitted on 14 Feb 2024 (v1), last revised 8 Aug 2024 (this version, v3)]
Title:Polynomial Semantics of Tractable Probabilistic Circuits
View PDFAbstract:Probabilistic circuits compute multilinear polynomials that represent multivariate probability distributions. They are tractable models that support efficient marginal inference. However, various polynomial semantics have been considered in the literature (e.g., network polynomials, likelihood polynomials, generating functions, and Fourier transforms). The relationships between circuit representations of these polynomial encodings of distributions is largely unknown. In this paper, we prove that for distributions over binary variables, each of these probabilistic circuit models is equivalent in the sense that any circuit for one of them can be transformed into a circuit for any of the others with only a polynomial increase in size. They are therefore all tractable for marginal inference on the same class of distributions. Finally, we explore the natural extension of one such polynomial semantics, called probabilistic generating circuits, to categorical random variables, and establish that inference becomes #P-hard.
Submission history
From: Oliver Broadrick [view email][v1] Wed, 14 Feb 2024 11:02:04 UTC (207 KB)
[v2] Sun, 28 Apr 2024 19:34:38 UTC (250 KB)
[v3] Thu, 8 Aug 2024 05:58:30 UTC (251 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.