Computer Science > Logic in Computer Science
[Submitted on 23 Feb 2024 (v1), last revised 11 Dec 2024 (this version, v2)]
Title:Interpretation of Inaccessible Sets in Martin-Löf Type Theory with One Mahlo Universe
View PDF HTML (experimental)Abstract:Martin-Löf type theory $\mathbf{MLTT}$ was extended by Setzer with the so-called Mahlo universe types. The extension of $\mathbf{MLTT}$ with one Mahlo universe is called $\mathbf{MLM}$ and was introduced to develop a variant of $\mathbf{MLTT}$ equipped with an analogue of a large cardinal. Another instance of constructive systems extended with an analogue of a large set was formulated in the context of Aczel's constructive set theory: $\mathbf{CZF}$. Rathjen, Griffor and Palmgren extended $\mathbf{CZF}$ with inaccessible sets of all transfinite orders. While Rathjen proved that this extended system of $\mathbf{CZF}$ is interpretable in an extension of $\mathbf{MLM}$ with one usual universe type above the Mahlo universe, it is unknown whether it can be interpreted by the Mahlo universe without a universe type above it. We extend $\mathbf{MLM}$ not by a universe type but by the accessibility predicate, and show that $\mathbf{CZF}$ with inaccessible sets can be interpreted in $\mathbf{MLM}$ with the accessibility predicate. Our interpretation of this extension of $\mathbf{CZF}$ is the same as that of Rathjen, Griffor and Palmgren formulated by $\mathbf{MLTT}$ with second-order universe operators, except that we construct the inaccessible sets by using the Mahlo universe and the accessibility predicate. We formalised the main part of our interpretation in the proof assistant Agda.
Submission history
From: Yuta Takahashi [view email][v1] Fri, 23 Feb 2024 03:27:37 UTC (55 KB)
[v2] Wed, 11 Dec 2024 18:56:15 UTC (64 KB)
Current browse context:
cs.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.