Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Feb 2024]
Title:Adversarial-Robust Transfer Learning for Medical Imaging via Domain Assimilation
View PDF HTML (experimental)Abstract:In the field of Medical Imaging, extensive research has been dedicated to leveraging its potential in uncovering critical diagnostic features in patients. Artificial Intelligence (AI)-driven medical diagnosis relies on sophisticated machine learning and deep learning models to analyze, detect, and identify diseases from medical images. Despite the remarkable performance of these models, characterized by high accuracy, they grapple with trustworthiness issues. The introduction of a subtle perturbation to the original image empowers adversaries to manipulate the prediction output, redirecting it to other targeted or untargeted classes. Furthermore, the scarcity of publicly available medical images, constituting a bottleneck for reliable training, has led contemporary algorithms to depend on pretrained models grounded on a large set of natural images -- a practice referred to as transfer learning. However, a significant {\em domain discrepancy} exists between natural and medical images, which causes AI models resulting from transfer learning to exhibit heightened {\em vulnerability} to adversarial attacks. This paper proposes a {\em domain assimilation} approach that introduces texture and color adaptation into transfer learning, followed by a texture preservation component to suppress undesired distortion. We systematically analyze the performance of transfer learning in the face of various adversarial attacks under different data modalities, with the overarching goal of fortifying the model's robustness and security in medical imaging tasks. The results demonstrate high effectiveness in reducing attack efficacy, contributing toward more trustworthy transfer learning in biomedical applications.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.